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 1. INTRODUCTION

 The theory of optimal economic growth, in the form given it by Ramsey (1928), and
 developed by many others, is primarily concerned with determining the pattern of
 investment in augmentable capital goods, which is most desirable for an economy,
 according to a "utilitarian" social welfare function. In these studies, "natural resources"
 are almost invariably assumed to be supplied exogenously in given amounts, in each
 period. This approach is clearly unsuitable for examining the optimal pattern of depletion
 of exhaustible resources.

 In recent years, there has been a major concern over the world's dwindling supplies of
 exhaustible natural resources, and a realization of their increasing significance in produc-
 tion (in the absence of suitable substitutes). This, in turn, has led to a significant literature,
 concerned with finding the characteristics of optimal growth programs for economies with
 exhaustible resource constraints; that is, of jointly determining the optimal depletion
 patterns of such resources, and optimal investment in augmentable capital goods.

 It is recognized that technical progress is an economic force which offsets the
 limitations imposed by exhaustible resources [see, for example, Stiglitz (1974)]. At the
 same time population growth tends to heighten such limitations [see, for example, Solow
 (1974), Ingham and Simmons (1975)]. In this paper, we consider a model in which capital,
 labour and an exhaustible resource produce output, which can be accumulated as capital or
 consumed. The production function is subject to (exponential) technical progress, and
 labour (identical to "population" in the model) is growing exponentially.

 A planner evaluates per-period social welfare according to a classical Utilitarian
 index, and following Ramsey (1928), has a zero subjective discount rate. The planner
 seeks a programme which "maximizes" the sum of per-period social welfares. Since
 population is growing exponentially, this involves an optimization exercise with a negative
 "effective" discount rate.

 This paper is concerned with finding necessary, and sufficient, conditions for the
 existence of a "valuation finite" optimal programme in the above framework. [See Section
 2 for definitions of concepts used.]

 We use three conditions for our existence theorem (Theorem 1). The first conditions
 states that the effect of technical progress outweighs the effect of population growth (see
 Condition B.1). The second states that the utility function is bounded (see Condition B.2).
 The third essentially amounts to a condition on the rate at which utility must approach its
 upper bound as consumption goes to infinity, in relation to the consumption growth
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 522 REVIEW OF ECONOMIC STUDIES

 possibilities given by the production function, population growth and technical progress
 (see Condition B.3).

 In Section 4, we establish three necessary conditions for the existence of a valuation
 finite optimal programme (Theorem 2). First, it is shown that if an optimal programme
 exists (whether it is valuation finite or not) then the effect of technical progress must
 outweigh the effect of population growth (in the same sense as Condition B. 1). Second, if
 an optimal programme exists, the utility function must be bounded (Condition B.2). The
 third condition expresses much the same restriction as (B.3), but in a slightly weaker form
 (see Condition B.3').

 Examples are given in Sections 3 and 4, which illustrate how Theorems 1 and 2 can be
 applied to cases where the utility function assumes parametric forms. Remarks following
 the Theorems relate our necessary, and sufficient conditions for existence of a valuation
 finite optimal programme, to the results on this issue in the existing literature.

 2. THE MODEL

 Production

 Consider an economy with changing technology, specified by a sequence of production
 functions, G,(t = 0, 1, 2, . . .) from R+ to R+. A current output level, Z, is producible, at
 date (t + 1), from a capital input, K, exhaustible resource input, D, and labour input, L,
 available at date t, if Z = G,(K, D, L).

 Capital is assumed to be non-depreciating, and total output, Y, at date (t + 1), is then
 defined as [G,(K, D, L)+K]. A sequence of total-output functions, F,(t = 0, 1,2,...)
 from R3+ to R+ can then be defined, for (K, D, L) ' 0, by

 Ft(K, D, L) = Gt(K, D, L) +K. (1)

 We will consider the case where technical change is exponential, and neutral with respect
 to the inputs in the sense that there is a scalar A '-1, and a function, G, from R 3 to R+, such
 that

 Gt(K, D, L) = A tG(K, D, L) fort _ 0. (2)

 The function, G, is assumed to satisfy:

 Assumption 1. G is continuous, concave, and homogeneous of degree one for
 (K, D, L) ?-0; it is differentiable for (K, D, L) >> 0.

 Assumption 2. Gk = (aG/aK) > 0, GD = (aG/aD) > 0, GL = (aG/aL) > 0 for
 (K,D, L) >>0.

 The initial capital input K, and the initial available stock of the exhaustible resource,
 S, are historically given, and positive. The available labour force (identical in this paper to
 "population") at date t, denoted by {t, is exogenously given, and grows exponentially.
 That is, there is a scalar n > 1, such that

 it?=nt for t_0. (3)

 A feasible programme is a sequence (K, D, L, Y, C) = (Kt, Dt, Lt, Yt+1, Ct+1) satis-
 fying

 Ko=K, >2J0Dt s Lt =tt for t'0
 Yt+1 =Ft(Kt,Dt,Lt), Ct+1= 'Yt+-Kt+l for t_0 (4)

 (Kt,Dt, Yt+1, Ct+1)?0 for t'0.
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 Given a feasible programme (K, D, L, Y, C), we will write

 kt = (Kt/Lt), dt = (Dt/Lt) for t-' 0

 ct = (Ct/Lt), Yt = (Yt/Lt) for t_ 1.

 Preferences

 The planner is endowed with a utility function u from R+ to R. A feasible programme
 (K*, D*, L*, Y*, C*) is called optimal if

 lim SUPT-O0 TET1 [Ltu(ct) -L*u(c] )0 (6)

 for every feasible programme (K, D, L, Y, C). Since for every feasible programme
 (K, D, L, Y, C), Lt = Lt = n t for t _ 0, so (6) is the same as

 limsupT-ZTiE n t[u(ct) -u(ct)]0 (7)

 Thus, although the planner's time-preference involves a zero (subjective) discount rate [as
 is clear from (6)] but his practice of evaluating a period's social welfare by the Classical
 Utilitarian index [Lu(c)], rather than the Average Utilitarian index [u(c)], together with
 the fact that the labour force is growing exponentially, amounts to an optimization
 problem with a discount factor greater than one [as is clear from (7)], or what is the same
 thing, a discount rate [(1/n) - 1] which is negative.

 We will, in some parts of the paper, be concerned with a stronger notion of optimality.
 We will say that v- is a linear transformation of u if there is (A, b) E R2, b $ 0, such that
 v (c) = A + bu (c) for c ' 0. A valuation finite optimal programme (K*, D*, L*, Y*, C*) is
 an optimal programme such that there is a linear transformation v- of u for which

 zt=W Ltv-(c*) is convergent. (8)

 This requirement is similar to showing that the programme (K*, D*, L*, Y*, C*) is
 "eligible" [Koopmans (1965)], "good" [Gale (1967)], or "valuation finite" [Hammond
 and Kennan (1979)].'

 The following assumptions on u will be used in the paper:

 Assumption 3. u (c) is strictly increasing for c ' 0.

 Assumption 4. u (c) is continuous for c _0.

 Assumption 5. u (c) is concave for c -0.

 Assumption 6. u (c) is differentiable for c > 0, and u'(c) - oo as c - 0.

 3. SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A VALUATION
 FINITE OPTIMAL PROGRAMME

 In this section, we will show that under a set of conditions on the utility and production
 functions, and on the rate of population growth and technical progress, a valuation finite
 optimal programme exists. For the existence result we must ensure, roughly speaking, that
 even with exhaustible resource constraints, per capita consumption can be increased to
 infinity fast enough to make the sum of per-period social welfare levels converge. This
 suggests the need for an interconnecting condition between the production and the utility
 functions, and we formulate this as Condition B.3.

 To get a precise existence result, we will specify the function G to be of the
 Cobb-Douglas form:
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 Assumption 7. G(K, D, L) = KaD'gL for (K, D, L) _0 where (a,fl, 3) >> 0 and
 a +j8 +3 = 1.

 The use of Assumption 7 in the exhaustible resource literature is widespread [see, for
 example, Solow (1974), Stiglitz (1974), Dasgupta and Heal (1974)].

 It should be mentioned that under Assumption 7 the model resembles the one studied
 by Stiglitz (1974, Section 3). However, it should be noted that Stiglitz also specifies the
 utility function in parametric form, and allows a positive subjective discount rate. In
 contrast, the procedure followed in this paper is to specify the production function
 parametrically by Assumption 7, and determine the class of utility functions for which
 there will exist a valuation finite optimal programme, under a zero subjective discount
 rate; that is, a negative "effective" discount rate.

 Under Assumptions 3-7, we will use three conditions to prove the existence theorem.
 Firstly, we will need

 Condition B.1. A >n.

 This is a precise way of expressing, in this model, the condition that "the effect of technical
 progress outweighs the effect of population growth".

 Secondly, we will need

 Condition B.2. U-supc-ou(c)<ao.

 The bounded utility hypothesis may appear to restrict the scope of the existence result.
 However, it really does not, as I will demonstrate in Section 4 that a necessary condition for
 the existence of an optimal programme is Condition B.2; so is Condition B. 1.

 Thirdly, we need a condition connecting the utility function to the production
 possibilities. This can be developed as follows, given Conditions B. 1 and B.2. Denote
 (A/ne) by m, m[l/(-a)] by g, and [U-u(c)] by v(c) for c '0. Let e denote, as usual, the
 base of the natural logarithms. For 1 < g _ g, define a g-effective utility function w (x; g),
 for x ' e, by

 w (x; g) = v [g(lOg x/log n)I (9)

 By definition, w (x; g) > 0 for x _ e, and it is a continuous, decreasing function of x. The
 *area under the g- effective utility function is

 co

 J w(x;g) dx. (10)

 The third condition we need is

 Condition B.3. There is some g, satisfying 1 < g < g, such that the *area under the
 g-effective utility function is finite.

 For our existence theorem, the important result we need is:

 Lemma 1. Under Assumption 7 and Condition B. 1, given 1< g<g, there exists a
 feasible programme (K, D, L, Y, C), and an integer, 1 _ T < o, such that

 ct _ gt fort_T. (11)

 Proof. Choose 0 < a < a, with a sufficiently close to a, such that G m[1/(1-a)] > g.
 Choose A >0, such that A6 = 2Gn. Choose 0>0, such that m[a-a)/(1-a)] = OQ Then,
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 since m > 1 by Condition B.1, so 0 > 1, and we have

 00O[l@] O (12)
 Choose 5'"> 0, such that

 Et=0 [MA/Ot] = S. (13)
 Finally, choose o- = min [1/2, c, K].

 Now, define a sequence (K, D, L, Y, C) in the following way. Let Ko=I, and
 Kt = oGtn t for t _ 1; Dt = [A/Ot] for t _ O; Lt =Lt = n t for t _ O; Yt+1 =Ft(Kt, Dt, Lt) and
 Ct+1 = Yt+1 - Kt+1 for t _ 0. To show that (K, D, L, Y, C) is a feasible programme we have
 only to show that Ct+1 '0 for t ' 0.

 For t _, we have

 Ct+l= Ft(Kt, Dt, Lt) - Kt+1 = A tK DgL" - Kt+l

 [ AtG atn a to"(a +O)A 9n 8t

 r((a +O)AoGtn tM [(a -a)1(1-a)lt + +

 [by substituting G-m[l/(la)], and simplifying]

 2o-GnGtn t - oGt+ln t+

 {since

 0< <1, 0< (a + )< 1,

 and

 6 = m [(a -a)/(1-a)] } = oaGt+ln t+l.

 Hence, (K, D, L, Y, C) is a feasible programme, and

 ct+1-i o-Gt+1 fort?_O. (14)

 Since G > g, so there is an integer 1 _ T < 0, such that (11) holds. jj

 Theorem 1. Under Assumptions 3, 4, and 7, there exists a valuation finite optimal
 programme if

 B.1 A >n.

 B.2 supc-ou (c) < oo

 B.3 ow (x; g)dx < 0 for some g, satisfying 1 < g <g.

 Proof. By Lemma 1, there is a feasible programme (K, D, L, Y, C), and an integer
 1 ' T < 0, such that

 ct-gt for t_ T (15)

 where g is given by Condition B.3.
 We note that w (x; g) is a positive, continuous, decreasing function of x, for x _ e. Let

 - be the smallest integer greater than [1/log n]. Then, for t _ X,
 nt+l

 f w(x; g)dx (nt+l-nt)w(nt+l; g). (16)
 nt
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 Simplifying (16), we have
 n t+1

 | w(x; g)dx _-[l-(lln)]nt+lw(nt+'; g). (17)
 nt

 So, using (17) and Condition B.3, we have

 t=fn w(n ;g)<oo (18)

 Using the definition of w (x; g), we have

 Y.t=,n v(gt)<a<o (19)

 Since v is a positive, decreasing function, so, using (15), we have

 Et=, n tV(Ct)6<. (20)
 Then, by Brock and Gale (1969, Lemma 2, p. 236) there is a feasible programme
 (K*, D*, L*, Y*, C*) such that

 limsupTmoQt=j nt[v(ct-)v(c't)]-0 (21)
 for every feasible programme (K', D', L', Y', C'). Hence, (K*, D*, L*, Y*, C*) is an
 optimal programme. Using (20) in (21), and v (c) _0 for c _0,

 7t=l ntv(c*) <. (22)

 Since v(c)'0 for c'0, so (K*,D*,L*, Y*, C*) is a valuation finite optimal pro-

 gramme. jj

 Remark 1. Note that Theorem 1 does not use the concavity of u.

 Remark 2. It is possible to follow the suggestion of Solow (1974, p.34), and replace
 Assumption 7 by

 Assumption 7*. G(K, D, L) = H(K, L)D', where 0< j <1, and H is homogeneous
 of degree 1-,8.

 2
 and follow the method used above to get an existence result.

 Remark 3. The use of Condition B.3 to obtain (18) is a slight variation of the
 methods used to obtain the "Maclaurin-Cauchy integral test," and the "Cauchy Conden-
 sation test" [see, for example, Hardy (1967, pp. 351-355)].

 Example 1. This example demonstrates how Theorem 1 can be applied in a case
 where the utility function is parametrically syecified.

 Let u(c) =-[1/c ] where v > 0; A > n ; and g> n. Then (B.1), (B.2) are clearly
 satisfied. Also, there is 1 < g < g, such that g" > n (by choosing g sufficiently close to g).
 Then,

 w(x; g) = [1/g(wg x/logn)] = [1/(vlog g/logn)]

 Since gv > n, so [v log g/ log n]> 1, and
 co

 J w(x;g)dx<oo
 e

 Hence Condition B.3 is satisfied. So, by Theorem 1, there exists a valuation finite optimal
 programme.
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 Example 2. Theorem 1 also enables us to construct a utility function, such that there
 will exist a valuation finite optimal programme, irrespective of the actual values of g and n,
 provided Condition B. 1 holds. We give an example of such a utility function.

 Let u(c)=-[1/ec]; A >nQ. Then Conditions B.1 and B.2 are satisfied. Pick any g
 satisfying 1 < g < g. Then,

 w (x; g) = [1 /exp {g(log x/log n) }] = [1/exp {x (log g/log n)}]

 Since log g > O, and log n > O, so N-[log g/log n ]> O. Hence, we have
 co c

 J w(x; g)dx =f 1/exN]dx < oo.
 e e

 Hence, Condition B.3 is satisfied, and by Theorem 1, there exists a valuation finite optimal
 programme.

 4. NECESSARY CONDITIONS FOR THE EXISTENCE OF A VALUATION
 FINITE OPTIMAL PROGRAMME

 It is worthwhile to show that the existence theorem of Section 3 was not obtained
 under overly strong sufficient conditions. This can best be demonstrated by proving that if
 a valuation finite optimal programme exists, then Conditions B.1, B.2 and B.3 are
 satisfied. Although, we have not been able to do precisely this, it is possible to demonstrate
 that if an optimal programme exists then Conditions B. 1 and B.2 are satisfied. Also, if a
 valuation finite optimal programme exists, then a condition "close to" Condition B.3 is
 also satisfied. We write this condition as follows:

 Condition B.3'. The *area under the g-effective utility function is finite.

 Lemma 2. Under Assumptions 3-7, if there exists an optimal programme then
 Condition B. 1 holds.

 Proof. If there is an optimal programme (K, D, L, Y, C), then for each t ' 1, the
 expression

 t [Ft-i(Kt-1, Dt-1, Lt-1)-K] + t+iu[Ft(K, Dt Lt) -Kt+i]

 must be a maximum at K = Kt. By Assumption 6, Ct > 0 for t _ 1, and so by Assumption 7,
 (Kt, Dt) ? 0 for t i 0. So, using Assumptions 6 and 7,

 u'(ct) = u'(ct+D)(aFt/aKt) for t_ 1. (23)

 (aFt/aKt) > 1 for t ' 1, so by (23) and Assumption 5,

 ct < ct+1 for t _ 1. (24)

 Since ct > 0 for t _ 1, so by (24), g inf t1ct > 0.
 By feasibility, we know that for t _ 0,

 kt+l = (m t/n)k t'Dt + (1 /n)kt - Ct+1c (25)

 If Condition B.1 does not hold, then m 1, so

 ?+_ (1 /n )k tDt + (1 /n )kt - ct+1. (26)

 Since Dt so (26) yields

 k+' (SI/n)k' + (1/n)kt - ct+i (27)
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 Since n > 1, and 0 < a < 1, so (27) implies that there is V < o, such that k, _ V for t '-O.
 Also, D, -* 0 as t -* 00, so there is T <00, such that for t' T,

 (1 /n) ktD3_ (V'/ n)D3 _g (u2).

 Hence, for t _ T, using (26),

 kt+1 _ (g/2) + (l/n)kt - g = (l/n)kt - (g/2) (28)

 Hence, kt+1 ' (l/n)kt fort - T, and so kt- 0 as t - 0. Using this in (28), kt <0 for large t a
 contradiction. Hence, Condition B.1 must hold. II

 Lemma 3. UnderAssumptions 3-7, if an optimal programme exists, then Condition
 B.2 holds.

 Proof. If there is an optimal programme (K, D, L, Y, C), then for each t _ 1, and
 0 _D - Dt_ + Dt, the expression

 ur n' ) K-j]D,'-+)-KF (K, Dt-,+Dt-D, Lt)-Kt l

 must be a maximum at D Dt-1. By Assumption 6, Ct > 0 for t ' 1, and so by Assumption
 7, (Kt, Dt) >> 0 for t ' 0. So, using Assumptions 6 and 7

 u(ct)(aFt-l/Dt_1) = u'(ct+1)(GFt/aDt) for t - 1. (29)

 By Lemma 2, ct is monotonically increasing by (24). We claim that ct -* 00 as t -* 00. If
 not, then ct is bounded above, and U'(Ct) is bounded below by a positive number. So, by
 (29), (aFW/aDt) is bounded above. We have

 (aFt/aDt) = [(/3A tKctD'tLft)/Dt] for t ' 0. (30)

 Since (aFt/aDt) is bounded above, and Dt -* 0 as t -* 0, so A tG(Kt, Dt, Lt) -* 0 as t -* 00. By
 feasibility, we have for t _ 0,

 Kt+1 = A tG(Kt, Dt, Lt) +Kt - Ct+1. (31)

 By (24), Ct+l i' gun t= for t 0 O. Since A tG(Kt, D, Lt) - 0 as t o- , so there is T < ,
 such that for t '-T, A tG(Kt Dt Lt) ' (,/2). Hence, by (31), for t T,

 Kt+i = Kt - (,/2). (32)

 But then Kt < 0 for large t, a contradiction. This establishes our claim that ct -+ 00 as t -+ 00.
 Define a sequence (pt, qt, Vt) as follows:

 po = u'(cj)(3Fo/aKo); Pt = U'(Ct) for t ' 1

 qt = u'(cj)(aFo/aDo) for t ?0 (33)

 Vt = pt+1(aFt/aLt) for t ?O.

 It is easy to check that W(C, L)-Lu(c) is concave in C, and (aW/aC) = u'(c). Thus, for
 C ?0, we have

 W(C, Lt) - W(Ct, Lt) ? u'(ct)(C - Ct). (34)

 Rearranging terms in (34) yields
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 Also, using the concavity of F, in (K, D, L),

 Ft(K, D, L) -Ft(Kt, Dt, Lt) _ (aFt/aKt)(K -Kt) + (aFt/aDt)(D -Dt) + (aFt/aLt)(L -Lt).

 (36)

 Multiplying through by Pt+i, and using (23), (29), (33),

 pt+,[Ft(K, D, L) -Ft(Kt, Dt, Lt)]-<pt(K -Kt) +qt(D -Dt)+^,yt(L -Lt). (37)

 Rearranging terms in (37) and using Assumption 7,

 0 = pt+ Ft(Kt, Dt, Lt) - ptKt - qtDt - ytLt

 =-pt+Ft(K, D,L)-ptK-qtD-ytL for (K,D,L)-O, t_O. (38)

 We will use (35) and (38) to show that ptKt is bounded above. For this purpose, we
 write, for t i 0,

 pt+l Ct+l = pt+l Yt+l- pt+,Kt+l = pt+l Yt+l- ptKt -qtDt - ytLt

 + qtDt + ,tLt + [ptKt -pt+Kt+K ]

 = qtDt + ytLt + [ptKt -pt+1Kt+ 1i,

 by using (38). Now,

 ytLt = Pt+l (aFt/aLt)Lt = [(aFt1aLt)Lt1aFt1aDt]qt

 [by using (29)] = Dt[(aFt1aLt)Lt/(aFt1aDt)Dt]qt = (3/1,)qtDt. Hence,

 zt=o pt+1ct+= poKo + t=0 qtDt + Et=oG(/38)qtDt -PT+lKT+l (39)

 So,

 ET + &8]yT
 ?t=O Pt+l Ct+l -poKo0+q41 + (q/l)] t=0 Dt

 ' poKo + qo[1 + (3/j)]S.

 Hence, Et= ptCt < 0. Using this in (39) shows that ptKt is convergent, and bounded above
 by poKo + qo[1 + (3/3)]5.

 Now, we will shQw that u (c) is bounded above. For t ?-1,

 Lt[u (Ct+1/Lt) - u (ct)] = W(Ct+1, Lt) - W(Ct, Lt) ? pt(Ct+1 - Ct). (48)

 Also, since Lt+1 > Lt ' 1, and ct is increasing with t,

 u (ct+i) - u (ct) ? LLt[u (ct+i) - u (ct)] ? LLt[u (Ct+l/Lt) - u (ct)]. (41)

 Combining (40) and (41),

 u (ct+1) - u (ct) = pt(Ct+1 - CO). (42)

 Now,

 pt ( Ct+ 1 - Ct) = pt ( Yt+ 1 - Kt+ 1 ) - pt ( Yt - Kt)

 = ptYt+1 -pt- Kt - qt- Dt t-v iLt + qt- Dt + y,t- Lt + pt-Kt-ptKt+1

 - [PtYt -p-Kt-1 -qt- Dt--yt-Lt-

 + qt-1Dt-1 + yt-vLt-1 + pt-1 Kt-1 - ptKt]

 _- t 1 (D _. Dt- r) + yt 1 vL t 1) r [ pt vt-pK+1 t K-1-pK
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 by using (38). Now, yt-(Lt -Lt-1) ' Vyt- Lt_ nyt- Lt-1, and qt-(Dt -Dt-1) ' qt-1Dt =
 qtDt. So we have

 pt(Ct+l - Ct) _ qtDt + nyt-1Lt-1 + [pt-1Kt -ptKt+1] - [pt-1Kt-, -pKt]. (43)

 Thus, summing (43) from t = 1 to t= T

 ET 1 Pt(Ct+ - Ct) ET 1 qtDti Zn ET -1Lt-1 + [poKi -pTKT+1] -[poKo -PTKT].

 We have already shown that ytLt = (8/3,8)qtDt. So,
 T

 Zt=l pt(Ct+l - Ct) - qo[l + n (8/j3)]S + poK, + pTKT. (44)

 Using (42) and (44),

 U (CT+l) -u (c1) - qo[1 + n (8/3)]S + poK + PTKT. (45)

 Since PTKT is bounded above, so is U (CT+1), by (45). But we have shown that ct -+ o0 as
 t -+ 00, so u (c) is bounded above, and Condition B.2 holds. II

 Theorem 2. Under Assumptions 3-7, if there exists a valuation finite optimal
 programme, then

 (B.1) A >n'

 (B.2) supc_ou (c) < o
 00

 (B.31) w(x; g)dx <o.
 e

 Proof. If there exists a valuation finite optimal programme (K, D, L, Y, C), then it is
 also an optimal programme. So, by Lemmas 2 and 3, Conditions B. 1 and B.2 must hold.

 Consider the sequence (Xt) given by Xo = Kt, Xt+l = A tXtJS'L; +Xt. Denote (Xt/Lt)
 by xt. Note that Xt+1 > Xt, and so nxt+l > xt for t ' 0. Then, for t ' 0

 nxt+l = m tx5aSo + xt. (46)

 Using (46), and nxt+l > xt, we have

 X t+l X t [nxt+ilx t] _X a=mt (47)

 Summing from t = 0 to t = T in (47)

 X1l-+a 1 -a = S3 y tT omt = S6 ( 1)]m T+1,(8 XT+1 -X0 = I Om L, mJm (48)

 Consequently, there is E < 0, such that

 x t =Emt for t ' 0. (49)

 And, there is E < 0, such that

 Xt =- Em [tl(l-aA] = Eg t (

 It is clear from the definition of the sequence (Xt), that Ct ? Xt for t ' 1, so

 ct _Eg. (51)

 Now, since (K, D, L, Y, C) is a valuation finite optimal programme, so there is a linear
 transformation v- of u, such that

 Zt=l Ltv(ct) is convergent. (52)
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 Since c, monotonically increases to infinity (by Lemma 3), so u (ct) converges to U as
 t -* oc. Then, writing

 v (c) = A + bu (c) = b[(A/b) + u (c)],

 we note that by (52), (A/b)= -U. Hence, (52) implies that

 Et= l Ltv (ct) < o) (53)

 where v (c) = U - u (c) for c _ O.
 Choose A>0 such that g lg/logn) E. Let r be the smallest integer such that

 AnT = e. Then, since w (x; g) is a positive, continuous decreasing function of x, so for t ' ,
 Antt+l

 Ant w(x; g)dx?A(nt+l1nt)w(Ant; g)

 =A (n - 1)n tw(An t; )

 =A(n - 1)ntv(Egt)

 _A (n - 1)n tv (ct), by (51).

 Hence, by using (53), Condition B.3' must hold. II

 Remark 4. It is interesting to note that even if the effect of technical progress just
 offsets the effect or population growth (A = n ') there does not -exist an optimal
 programme. In particular, if there is no technical progress (A = 1), no optimal programme
 exists. This is the result obtained by Ingham and Simmons (1975).

 Remark 5. It should be noted that Lemma 3 demonstrates that with commonly
 used utility functions like u (c) = VIc, or u (c) = log c, no optimal programme can exist in this
 framework.

 Example 3. This example demonstrates how Theorem 2 can be applied in a case
 where the utility function is parametrically specified.

 Let u(c)=-[1/c ] where v>O; A >n ; and g?n. Then Conditions B.1, B.2 are
 satisfied. Also, we have

 w (x; g) = [1/(Og x/log n) ] = [1/x (v log k/log n)]

 Since gv _ n, so [v log g/log n] '-1, and

 lim."Oo| w (x; g)dx = o.

 Hence, Condition B.3' is violated. Hence, by Theorem 2 there does not exist a valuation
 3

 finite optimal programme.

 First version received May 1977; final version accepted October 1980 (Eds.).

 This research was completed during the author's visit to Cornell University in the summer of '80. Research
 facilities provided by the Economics Department of Cornell University is gratefully acknowledged. This
 research was partially supported by a National Science Foundation Grant. The present version has benefited
 considerably from detailed suggestions by Peter Hammond.

 NOTES

 1. Actually, valuation finiteness in the sense of Hammond and Kennan would involve Xi= (, - u(c *))L,
 converging, where it is the supremum over all feasible programmes of u (ct). Note that if the utility function is not
 bounded above, ut will still exist, because there is a bound on capital and resources at time t - 1 (given K and S),
 and so on output and consumption at time t. And even if the utility function is bounded above (which,
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 incidentally, I show later to be a necessary condition for the existence of an optimal programme) by u, one could
 have valuation finiteness in the sense of Hammond and Kennan, without having valuation finiteness in my sense
 (since at < u for t _ 1). Thus, in both respects, their definition is somewhat more general than mine.

 2. Note that with Assumption 7, and technical progress involving geometric progression, the notion of
 Hicks-neutral technical progress (which I assume) coincides with the notions of capital augmenting (Solow
 neutral), labour augmenting (Harrod neutral) or even resource augmenting progress. With the more general
 form given by Assumption 7*, one can introduce capital and labour augmenting progress in H(K, L), following
 Brock and Gale (1969), and resource augmenting progress "separately". In contrast to Assumption 7, this
 generalization would illustrate the importance of the rates of technical progress associated with different factors
 (compared to n) in a condition analogous to Condition B. 1.

 3. It is fairly easy to show that in this example, gV c n implies that there is no optimal programme. For if

 there did exist an optimal programme, then following the proof of Lemma 3 we have Yt1 p,C, < 00, or using
 (4.11), Yt= L,u'(c,)c, <00. Using the special form of the utility function, we then have

 EX=1 Lt(-u(ct)) < 0, or Et=l Ltv(ct) < 0,
 which means there is a valuation finite optimal programme, a contradiction to what we have established in
 Example 4.1. Thus, Examples 1 and 3 show that for u (c) = -(1 /cV), the conditions A > n 3 and g" > n are
 necessary and sufficient for the existence of an optimal programme. Also, these conditions are necessary and
 sufficient for the existence of valuation finite optimal programmes.

 Examples 1 and 3 can be used to compare our existence results with those obtained by Brock and Gale
 (1969). From (11) and (50) the "asymptotic growth factor" in this model, in the sense of Brock and Gale, is g. The
 asymptotic elasticity of u is (-v). Brock and Gale's criterion for existence of an optimal programme would then
 be ng( v)<1, which agrees with our result in Example 1. Their criterion for non-existence of an optimal
 programme would be ng( v) > 1. Example 3 shows that this is too strong a criterion for non-existence, and
 demonstrates that our criteria are capable of handling "borderline" cases like ng( v) = 1, where Brock and Gale's
 criteria would fail. This is because the criteria of Brock and Gale involve only the asymptotic values of key
 magnitudes; our criteria involve, in addition, the rate at which these asymptotic values are approached.
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